Modelling the effect of defects and cracks in solar cells' performance using the d1MxP discrete model

Sci Rep. 2023 Aug 1;13(1):12490. doi: 10.1038/s41598-023-39769-0.

Abstract

Renewable energies are increasingly playing an important role in the world's energy supply. Society demands new solutions to solve environmental issues caused by fossil fuels. The importance of photovoltaic technology has been increasing and consequently, the necessity to have more accurate models to characterise the performance of solar cells during their entire lifetime has rose as well. Performance problems may appear during devices' lifetimes associated with factors, such as weather conditions or faulty installation. Cracking might occur, leading to abrupt reductions on the produced power, quite difficult and expensive to fix. The I-V curves of a defected or cracked solar cell might not have the shape imposed by the usual models as 1M5P. In this article, cracked c-Si solar cells are modelled using a novel model: d1MxP. This model is based on the discretisation of the diode's response on models as 1M5P. Instead of imposing a shape and compute some parameters to fit it on experimental data, the proposed model connects every two points. The results suggest a better fit using the proposed model in comparison with the 1M5P, not only in the original curves, but also modelling cracked cells. As consequence of a better fitting, the computation of important figures of merit as maximum power point or fill factor, reveals to be more precise. It is concluded that the proposed model might characterise the performance of a solar cell, even cracked, which is a huge advance aiming the possibility of simulating complex problems during the cells' operation lifetime.