Identification of RNF150 as the hub gene associated with microsatellite instability in gastric cancer

Sci Rep. 2023 Aug 1;13(1):12495. doi: 10.1038/s41598-023-39255-7.

Abstract

Gastric cancer (GC) is a common digestive tract malignancy with the sixth global incidence and third cancer-related deaths, respectively. Microsatellite instability (MSI), accounting for one of the molecular subtypes of GC, plays an important role in GC and is affected by a sophisticated network of gene interactions. In this study, we aimed to explore the expression pattern and clinical performance of MSI related gene in GC patients. Weighted gene co-expression network analysis (WGCNA) was exploited to single out the vital module and core genes in TCGA database. We applied the protein-protein interaction (PPI) and survival analysis to propose and confirm RNF150 as the hub gene in GC. Finally, we utilized immunohistochemistry (IHC) and reverse transcription-polymerase chain reaction (RT-PCR) to explore the expression pattern of RNF150 in GC patients. With the highest weight correlation and standard correlation, RNF150 was selected as the hub gene for following validation. In validation, data obtained from the test sets showed a lower expression of RNF150 in MSI GC compared to microsatellite stability (MSS) GC. Moreover, survival analysis shows that MSI GC patients with a lower RNF150 expression level displayed the longer OS time. Compared to the expression in normal gastric tissues, the protein level of RNF150 was virtually up-regulated in ten cases of GC tissues. Furthermore, RNF150 protein level was decreased in MSI GC samples compared to MSS GC samples. When validated the mRNA expression with RT-PCR in fresh GC tissues, we also found the similar trend. RNF150 was identified as a novel MSI-related gene in GC. It is expected to be an auspicious prognostic biomarker for GC patients.

MeSH terms

  • Humans
  • Membrane Proteins / genetics
  • Microsatellite Instability*
  • Microsatellite Repeats / genetics
  • Stomach Neoplasms* / pathology

Substances

  • RNF150 protein, human
  • Membrane Proteins