p55γ degrades RIP3 via MG53 to suppress ischaemia-induced myocardial necroptosis and mediates cardioprotection of preconditioning

Cardiovasc Res. 2023 Nov 15;119(14):2421-2440. doi: 10.1093/cvr/cvad123.

Abstract

Aims: Regulated necrosis (necroptosis) and apoptosis are important biological features of myocardial infarction, ischaemia-reperfusion (I/R) injury, and heart failure. However, the molecular mechanisms underlying myocardial necroptosis remain elusive. Ischaemic preconditioning (IPC) is the most powerful intrinsic cardioprotection against myocardial I/R injury. In this study, we aimed to determine whether IPC suppresses I/R-induced necroptosis and the underlying molecular mechanisms.

Methods and results: We generated p55γ transgenic and knockout mice and used ligation of left anterior descending coronary artery to produce an in vivo I/R model. The effects of p55γ and its downstream molecules were subsequently identified using mass spectroscopy and co-immunoprecipitation and pulldown assays. We found that p55γ expression was down-regulated in failing human myocardium caused by coronary heart disease as well as in I/R mouse hearts. Cardiac-specific p55γ overexpression ameliorated the I/R-induced necroptosis. In striking contrast, p55γ deficiency (p55γ-/-) and cardiac-specific deletion of p55γ (p55γc-KO) worsened I/R-induced injury. IPC up-regulated p55γ expression in vitro and in vivo. Using reporter and chromatin immunoprecipitation assays, we found that Hif1α transcriptionally regulated p55γ expression and mediated the cardioprotection of IPC. IPC-mediated suppression of necroptosis was attenuated in p55γ-/- and p55γc-KO hearts. Mechanistically, p55γ overexpression decreased the protein levels of RIP3 rather than the mRNA levels, while p55γ deficiency increased the protein abundance of RIP3. IPC attenuated the I/R-induced up-regulation of RIP3, which was abolished in p55γ-deficient mice. Up-regulation of RIP3 attenuated the p55γ- or IPC-induced inhibition of necroptosis in vivo. Importantly, p55γ directly bound and degraded RIP3 in a ubiquitin-dependent manner. We identified MG53 as the E3 ligase that mediated the p55γ-induced degradation of RIP3. In addition, we also found that p55γ activated the RISK pathway during IPC.

Conclusions: Our findings reveal that activation of the MG53-RIP3 signal pathway by p55γ protects the heart against I/R-induced necroptosis and underlies IPC-induced cardioprotection.

Keywords: MG53; Necroptosis; RIP3; Reperfusion injury; p55γ.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis
  • Humans
  • Ischemic Preconditioning, Myocardial* / methods
  • Membrane Proteins / metabolism
  • Mice
  • Mice, Knockout
  • Myocardial Infarction* / genetics
  • Myocardial Infarction* / metabolism
  • Myocardial Infarction* / prevention & control
  • Myocardium / metabolism
  • Necroptosis
  • Necrosis / metabolism

Substances

  • MG53 protein, mouse
  • Membrane Proteins