Development of a visible-light-active-NiTiO3 coating for the efficient removal of the persistent herbicide 2,6-dichlorobenzamide (BAM) from drinking water

Chemosphere. 2023 Oct:339:139628. doi: 10.1016/j.chemosphere.2023.139628. Epub 2023 Jul 29.

Abstract

In the present research work, the photocatalytic evaluation of NiTiO3 nanoparticles immobilized on glass plates by the spin-coating procedure was carried out in the degradation of the recalcitrant herbicide 2,6-dichlorobenzamide (BAM). The concentrations of Ni employed to synthesize NiTiO3 nanoparticles were 1 wt% (1TESNi) and 2 wt% (2TESNi). The stability of coatings was evaluated by several washings and thermal treatments, which were verified by UV-vis analyses. The morphology of the coatings was studied by scanning electron microscopy (SEM-EDS). The coatings displayed thickness values of 1.35 and 2.56 μm for TiO2 and 1TESNi, respectively. The crystalline phases of the coatings were analyzed by X-ray diffraction (XRD), confirming the presence of NiTiO3 and other phases related to TiO2. The bandgap of 1TESNi, compared with the bare TiO2, was reduced from 2.96 to 2.40 eV as a consequence of Ni addition. The TiO2, 1TESNi and 2TESNi coatings were evaluated in the photodegradation of BAM using visible-light for 240 min. The highest effectiveness was displayed by the 1TESNi coating, obtaining degradation of 92.56% after 240 min. Also, the photocatalytic efficiency of the 1TESNi coating was only reduced 1.99% after 3 reuse cycles in the BAM degradation. The scavenger tests revealed that the main oxidizing species involved in the reaction were the •OH- and •O2- radicals. The 1TESNi coating showed the highest photocatalytic efficiency because of its absorption in the visible-light region, valuable surface area and electronic charge separation. Thus, these advantageous features guarantee that NiTiO3 coatings are an efficient method for degrading recalcitrant herbicides from drinking water using a practical way to recover and reuse photocatalysts.

Keywords: BAM herbicide; Immobilized NPs; Nickel titanates; Spin coating; Visible-light.

MeSH terms

  • Catalysis
  • Drinking Water*
  • Herbicides* / chemistry
  • Titanium / chemistry

Substances

  • titanium dioxide
  • Drinking Water
  • Herbicides
  • 2,6-dichlorobenzamide
  • Titanium