Transcranial MEP threshold voltages and current densities simulated with finite element modelling

Clin Neurophysiol. 2023 Oct:154:1-11. doi: 10.1016/j.clinph.2023.06.023. Epub 2023 Jul 20.

Abstract

Objective: The aim of this study was to compare stimulation thresholds and current densities in the brain for transcranial motor evoked potentials (tcMEPs) from the hands and feet with linked quadripolar (LQP), M3-M4 and C1-C2 electrode montages.

Methods: Twenty-five patients underwent cerebral vascular surgery with tcMEP monitoring. tcMEP voltage thresholds were compared between LQP (C1, M3, C2, M4), C1-C2, and M3-M4 montages. In a finite element model (FEM), hand, arm, and leg regions of interest (ROIs) on the cortical motor homunculus were segmented. Current densities in these ROIs at tcMEP thresholds were compared across tcMEP electrode montages.

Results: LQP tcMEP thresholds were 61.5 volts for hands and 95.2 volts for feet. Thresholds were higher for M3-M4 (hands, 89.4 V; feet, 141.3 V) and C1-C2 (hands: 137.3 V; feet: 194.7 V). Total current at threshold voltage was greater for LQP (hands, 210.9 mA; feet, 311.3 mA) compared to M3-M4 (hands, 166.8 mA; feet, 256.6 mA), but similar to C1-C2 (hands, 246.7 mA; feet, 341.1 mA). In FEM simulations, current density and local current density topography in the hand ROI at threshold were very similar for LQP, M3-M4 and C1-C2.

Conclusions: TcMEP voltage thresholds were least for LQP, and lesser for M3-M4 compared to C1-C2. In FEM simulations, resistance to current to hand ROI was ordered the same (LQP < M3-M4 < C1-C2). The local distribution of current density in motor cortex with tcMEP was mainly determined by cortical geometry.

Significance: Current densities and resistance to current simulated with FEM may explain threshold requirements for tcMEP electrode montages.

Keywords: Finite element modelling; Linked quadripolar (LQP) stimulation; Motor evoked potential; Threshold stimulation; Transcranial electrical stimulation.

MeSH terms

  • Evoked Potentials, Motor* / physiology
  • Finite Element Analysis
  • Hand
  • Humans
  • Transcranial Direct Current Stimulation*
  • Upper Extremity