Ultrasmall InGa(As)P Dielectric and Plasmonic Nanolasers

ACS Nano. 2023 Aug 22;17(16):16048-16055. doi: 10.1021/acsnano.3c04721. Epub 2023 Jul 31.

Abstract

Nanolasers have great potential for both on-chip light sources and optical barcoding particles. We demonstrate ultrasmall InGaP and InGaAsP disk lasers with diameters down to 360 nm (198 nm in height) in the red spectral range. Optically pumped, room-temperature, single-mode lasing was achieved from both disk-on-pillar and isolated particles. When isolated disks were placed on gold, plasmon polariton lasing was obtained with Purcell-enhanced stimulated emission. UV lithography and plasma ashing enabled wafer-scale fabrication of nanodisks with an intended random size variation. Silica-coated nanodisk particles generated stable subnanometer spectra from within biological cells across an 80 nm bandwidth from 635 to 715 nm.

Keywords: cell barcoding; lasing; nanolaser; nanophotonics; plasmonic.