Electroencephalography Network Indices as Biomarkers of Upper Limb Impairment in Chronic Stroke

J Vis Exp. 2023 Jul 14:(197). doi: 10.3791/64753.

Abstract

Alteration of electroencephalography (EEG) signals during task-specific movement of the impaired limb has been reported as a potential biomarker for the severity of motor impairment and for the prediction of motor recovery in individuals with stroke. When implementing EEG experiments, detailed paradigms and well-organized experiment protocols are required to obtain robust and interpretable results. In this protocol, we illustrate a task-specific paradigm with upper limb movement and methods and techniques needed for the acquisition and analysis of EEG data. The paradigm consists of 1 min of rest followed by 10 trials comprising alternating 5 s and 3 s of resting and task (hand extension)-states, respectively, over 4 sessions. EEG signals were acquired using 32 Ag/AgCl scalp electrodes at a sampling rate of 1,000 Hz. Event-related spectral perturbation analysis associated with limb movement and functional network analyses at the global level in the low-beta (12-20 Hz) frequency band were performed. Representative results showed an alteration of the functional network of low-beta EEG frequency bands during movement of the impaired upper limb, and the altered functional network was associated with the degree of motor impairment in chronic stroke patients. The results demonstrate the feasibility of the experimental paradigm in EEG measurements during upper limb movement in individuals with stroke. Further research using this paradigm is needed to determine the potential value of EEG signals as biomarkers of motor impairment and recovery.

Publication types

  • Video-Audio Media

MeSH terms

  • Electroencephalography / methods
  • Hand
  • Humans
  • Stroke Rehabilitation* / methods
  • Stroke* / diagnosis
  • Upper Extremity