Structural and optical behaviours of methyl acrylate-vinyl acetate composite thin films synthesized under dynamic low-pressure plasma

Heliyon. 2023 Jul 20;9(8):e18524. doi: 10.1016/j.heliyon.2023.e18524. eCollection 2023 Aug.

Abstract

Low-pressure (33.33 Pa) plasma polymerized methyl acrylate and vinyl acetate composite thin films with various monomer compositions were deposited onto glass substrates. Under the same plasma conditions, the homopolymer thin films were also prepared. The thickness of the composite films was observed to vary between 117 and 213 nm depending on the monomer ratio. The composite films exhibit a smooth, pinhole-free, and immaculate surface morphology, surpassing that of the homopolymers. The energy dispersive x-ray study shows that the films contain mainly carbon and oxygen with 26.09-37.20 at% and 35.03 - 40.10 at%, respectively. The composite films contain more carbon contents which enhance the film stability. The appearance of some broad absorption bands in the Fourier transform infrared spectroscopy indicates structural changes in the PP films caused by the restructuring or dilapidation of monomer molecules while forming the polymer. The UV-visible spectra analysis reveal that the composite films exhibited a tunable optical band gap by adjusting the monomer ratio. The decrease of methyl acrylate monomer reduces the direct and indirect optical band-gap values of composite films from 3.15 to 3.00 eV and 2.35 to 1.74 eV, respectively. While Urbach energy values increases from 0.33 eV to 0.90 eV. All the films showed good transmittance properties (86 - 96%) in the visible range wavelength (550 - 800 nm). Other optical parameters are also found better in composite films which indicates the aptness of the composite films in various optoelectronic or electronic applications.

Keywords: Composite thin films; Dynamic low-pressure plasma; Methyl acrylate; Optical band gap; UV–Vis spectroscopy; Vinyl acetate.