A novel biochar composite derived from oil-based drill sludge and cuttings: Structural characterization and electrochemical properties

Environ Res. 2023 Nov 1;236(Pt 2):116757. doi: 10.1016/j.envres.2023.116757. Epub 2023 Jul 28.

Abstract

How to dispose of large quantities of hazardous shale gas drilling waste is an important worldwide problem facing the oil and gas industry. In this study, we report an environmentally friendly and low energy consumption approach (carbonization followed by activation) to convert oil-based drill sludge (OBDS) and oil-based drill cuttings (OBDCs) into biochar composites and investigate the effect of hydrofluoric acid (HF) acidification on them. The biochar composites were prepared using the OBDS, OBDCs, the mixtures of OBDS and OBDCs, and HF treatment the mixtures were named OS, OC, OSC, and OSC-HF, respectively. The characterization result of synthesized biochar composites indicated that the OSC had a larger specific surface area and a higher degree of graphitization. The composites mainly consisted of SiO2 and BaSO4, except for biochar. The OSC electrode exhibited the highest oxygen evolution potential (1.72 V vs Ag/AgCl) and the lowest charge transfer resistance compared with OS, OC, and OSC-HF electrodes, implying that SiO2 plays an important role in electrochemical performance. Using the OSC electrode as an anode, the chemical oxygen demand removal efficiency of the OBDS supernatant was 79.4 ± 0.95%. Further, the OSC electrode could maintain higher degradation efficiency and stability after the fifth reuse. The study provides a promising route for the proper disposal and resource utilization of OBDS and OBDCs and proposes a novel biochar compound as an electrode for the efficient treatment of wastewater. Moreover, this work highlights the important significance of the simultaneous resource utilization of waste and the treatment of wastewater using waste materials.

Keywords: Biochar composites; Electrochemical properties; Oil-based drill cuttings; Oil-based drill sludge; Structural characterization.