Inhibition of Spartina alterniflora growth alters soil bacteria and their regulation of carbon metabolism

Environ Res. 2023 Nov 1;236(Pt 2):116771. doi: 10.1016/j.envres.2023.116771. Epub 2023 Jul 28.

Abstract

The state of growth of invasive species has a significant impact on the microbial regulation of the soil carbon (C) cycle. This study focused on the growth of Spartina alterniflora treated with imazapyr in the Tiaozini wetland of Jiangsu Province, China. The changes in soil bacterial structure, bacterial C metabolic activity, soil C, and regulation mechanism of soil C metabolic activity by biotic and abiotic factors were investigated. The results showed that soil bacterial diversity eventually decreased significantly (p < 0.05) along with significant changes in microbial structure (p < 0.05). Significant changes in soil physicochemical properties due to S. alterniflora growth inhibition were the key factors affecting the changes in the soil bacterial taxa composition (p < 0.05). Abiotic factors showed a greater effect on metabolic activities related to C fixation and biosynthesis of bacterial taxa than biotic factors (self-regulation). Additionally, bacterial taxa regulated soil C emission and degradation to a greater extent than abiotic factors. This study provides important information for understanding the regulators of C cycling in coastal wetland soil during the control of S. alterniflora invasion by imazapyr; moreover, it provides a scientific basis for the government to establish a prevention and control policy for S. alterniflora invasion. Understanding the complex interplay between abiotic and biotic factors is essential for developing effective strategies to manage soil C and mitigate the impacts of climate change.

Keywords: Abiotic regulation; Bacterial structure; Biotic factors; Carbon metabolism; Growth inhibition; Spartina alterniflora.

Publication types

  • Review