Method for measuring noise-power spectrum independent of the effect of extracting the region of interest from a noise image

Radiol Phys Technol. 2023 Dec;16(4):471-477. doi: 10.1007/s12194-023-00733-2. Epub 2023 Jul 29.

Abstract

This study aimed to evaluate the impact of region of interest (ROI) size on noise-power spectrum (NPS) measurement in computed tomography (CT) images and to propose a novel method for measuring NPS independent of ROI size. The NPS was measured using the conventional method with an ROI of size P × P pixels in a uniform region in the CT image; the NPS is referred to as NPSR=P. NPSsR=256, 128, 64, 32, 16, and 8 were obtained and compared to assess their dependency on ROI size. In the proposed method, the true NPS was numerically modeled as an NPSmodel, with adjustable parameters, and a noise image with the property of the NPSmodel was generated. From the generated noise image, the NPS was measured using the conventional method with a P × P pixel ROI size; the obtained NPS was referred to as NPS'R=P. The adjustable parameters of the NPSmodel were optimized such that NPS'R=P was most similar to NPSR=P. When NPS'R=P was almost equivalent to NPSR=P, the NPSmodel was considered the true NPS. NPSsR=256, 128, 64, 32, 16, and 8 obtained using the conventional method were dependent on the ROI size. Conversely, the NPSs (optimized NPSsmodel) measured using the proposed method were not dependent on the ROI size, even when a much smaller ROI (P = 16 or 8) was used. The proposed method for NPS measurement was confirmed to be precise, independent of the ROI size, and useful for measuring local NPSs using a small ROI.

Keywords: Computed tomography; Image quality; Noise power spectrum; Region of interest.

MeSH terms

  • Algorithms
  • Image Processing, Computer-Assisted* / methods
  • Phantoms, Imaging
  • Tomography, X-Ray Computed* / methods