The Impact of Spring Festival Travel on Epidemic Spreading in China

Viruses. 2023 Jul 10;15(7):1527. doi: 10.3390/v15071527.

Abstract

The large population movement during the Spring Festival travel in China can considerably accelerate the spread of epidemics, especially after the relaxation of strict control measures against COVID-19. This study aims to assess the impact of population migration in Spring Festival holiday on epidemic spread under different scenarios. Using inter-city population movement data, we construct the population flow network during the non-holiday time as well as the Spring Festival holiday. We build a large-scale metapopulation model to simulate the epidemic spread among 371 Chinese cities. We analyze the impact of Spring Festival travel on the peak timing and peak magnitude nationally and in each city. Assuming an R0 (basic reproduction number) of 15 and the initial conditions as the reported COVID-19 infections on 17 December 2022, model simulations indicate that the Spring Festival travel can substantially increase the national peak magnitude of infection. The infection peaks arrive at most cities 1-4 days earlier as compared to those of the non-holiday time. While peak infections in certain large cities, such as Beijing and Shanghai, are decreased due to the massive migration of people to smaller cities during the pre-Spring Festival period, peak infections increase significantly in small- or medium-sized cities. For a less transmissible disease (R0 = 5), infection peaks in large cities are delayed until after the Spring Festival. Small- or medium-sized cities may experience a larger infection due to the large-scale population migration from metropolitan areas. The increased disease burden may impose considerable strain on the healthcare systems in these resource-limited areas. For a less transmissible disease, particular attention needs to be paid to outbreaks in large cities when people resume work after holidays.

Keywords: China; Spring Festival travel; epidemic spread; metapopulation model; transportation network.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • COVID-19* / epidemiology
  • COVID-19* / prevention & control
  • China / epidemiology
  • Epidemics* / prevention & control
  • Holidays
  • Humans
  • Travel