Cutaneous Polymeric-Micelles-Based Hydrogel Containing Origanum vulgare L. Essential Oil: In Vitro Release and Permeation, Angiogenesis, and Safety Profile In Ovo

Pharmaceuticals (Basel). 2023 Jun 29;16(7):940. doi: 10.3390/ph16070940.

Abstract

Origanum vulgare var. vulgare essential oil (OEO) is known as a natural product with multiple beneficial effects with application in dermatology. Oregano essential oil represents a potential natural therapeutic alternative for fibroepithelial polyps (FPs), commonly known as skin tags. Innovative formulations have been developed to improve the bioavailability and stability of essential oils. In this study, we aimed to evaluate the morphology of a polymeric-micelles-based hydrogel (OEO-PbH), the release and permeation profile of oregano essential oil, as well as to assess in vivo the potential effects on the degree of biocompatibility and the impact on angiogenesis in ovo, using a chick chorioallantoic membrane (CAM). Scanning electron microscopy (SEM) analysis indicated a regular aspect after the encapsulation process, while in vitro release studies showed a sustained release of the essential oil. None of the tested samples induced any irritation on the CAM and the limitation of the angiogenic process was noted. OEO-PbH, with a sustained release of OEO, potentially enhances the anti-angiogenic effect while being well tolerated and non-irritative by the vascularized CAM, especially on the blood vessels (BVs) in the presence of leptin treatment. This is the first evidence of in vivo antiangiogenic effects of a polymeric-micelle-loaded oregano essential oil, with further mechanistic insights for OEO-PbH formulation, involving leptin as a possible target. The findings suggest that the OEO-containing polymeric micelle hydrogel represents a potential future approach in the pathology of cutaneous FP and other angiogenesis-related conditions.

Keywords: Origanum vulgare var. vulgare essential oil; SEM; angiogenesis; chorioallantoic membrane; in vitro release; polymeric micelles.