Design and Fabrication of an Ag Ultrathin Layer-Based Transparent Band Tunable Conductor and Its Thermal Stability

Nanomaterials (Basel). 2023 Jul 19;13(14):2108. doi: 10.3390/nano13142108.

Abstract

Transparent conductors (TC) have been widely applied in a wide range of optoelectronic devices. Nevertheless, different transparent spectral bands are always needed for particular applications. In this work, indium tin oxide (ITO)-free TCs with tunable transparent bands based on the film structure of TiO2/Ag/AZO (Al-doped ZnO) were designed by the transfer matrix method and deposited by magnetron sputtering. The transparent spectra and figure-of-merit (FOM) were effectively adjusted by precisely controlling the Ag layer's thickness. The fabricated as-deposited samples exhibited an average optical transmittance larger than 88.3% (400-700 nm), a sheet resistance lower than 7.7 Ω.sq-1, a low surface roughness of about 1.4 nm, and mechanical stability upon 1000 bending cycles. Moreover, the samples were able to hold optical and electrical properties after annealing at 300 °C for 60 min, but failed at 400 °C even for 30 min.

Keywords: TiO2/Ag/AZO; annealing; optical transmittance; sheet resistance; transparent conductor.