Progress in the Synthesis and Application of Tellurium Nanomaterials

Nanomaterials (Basel). 2023 Jul 12;13(14):2057. doi: 10.3390/nano13142057.

Abstract

In recent decades, low-dimensional nanodevices have shown great potential to extend Moore's Law. The n-type semiconductors already have several candidate materials for semiconductors with high carrier transport and device performance, but the development of their p-type counterparts remains a challenge. As a p-type narrow bandgap semiconductor, tellurium nanostructure has outstanding electrical properties, controllable bandgap, and good environmental stability. With the addition of methods for synthesizing various emerging tellurium nanostructures with controllable size, shape, and structure, tellurium nanomaterials show great application prospects in next-generation electronics and optoelectronic devices. For tellurium-based nanomaterials, scanning electron microscopy and transmission electron microscopy are the main characterization methods for their morphology. In this paper, the controllable synthesis methods of different tellurium nanostructures are reviewed, and the latest progress in the application of tellurium nanostructures is summarized. The applications of tellurium nanostructures in electronics and optoelectronics, including field-effect transistors, photodetectors, and sensors, are highlighted. Finally, the future challenges, opportunities, and development directions of tellurium nanomaterials are prospected.

Keywords: electronics; optoelectronic; tellurium nanostructures.

Publication types

  • Review

Grants and funding

This work is supported by the National Science Foundations of China (No. 62274093, No. 61991431), the Excellent Youth Foundation of Jiangsu Scientific Committee (BK20211538), and the National Basic Research Program of China (2018YFA0209100).