A Comparison of Conical and Cylindrical Implants Inserted in an In Vitro Post-Extraction Model Using Low-Density Polyurethane Foam Blocks

Materials (Basel). 2023 Jul 18;16(14):5064. doi: 10.3390/ma16145064.

Abstract

Combining tooth extraction and implant placement reduces the number of surgical procedures that a patient must undergo. Thus, the present study aimed to compare the stability of two types of conical implants (TAC and INTRALOCK) and another cylindrical one (CYROTH), inserted with a range of angulation of 15-20 degrees in low-density polyurethane blocks (10 and 20 pounds per cubic foot, PCF) with or without a cortical lamina (30 PCF), which potentially mimicked the post-extraction in vivo condition. For this purpose, a total of 120 polyurethane sites were prepared (10 for each implant and condition) and the Insertion Torque (IT), Removal Torque (RT), and Resonance Frequency Analysis (RFA) were measured, following a Three-Way analysis of variance followed by Tukey's post hoc test for the statistical analysis of data. The IT and RT values registered for all implant types were directly proportional to the polyurethane density. The highest IT was registered by INTRALOCK implants in the highest-density block (32.44 ± 3.28 Ncm). In contrast, the highest RFA, a well-known index of Implant Stability Quotient (ISQ), was shown by TAC implants in all clinical situations (up to 63 ISQ in the 20 PCF block without the cortical sheet), especially in lower-density blocks. Although more pre-clinical and clinical studies are required, these results show a better primary stability of TAC conical implants in all tested densities of this post-extraction model, with a higher ISQ, despite their IT.

Keywords: artificial bone; conical implants; cylindrical implants; dental implants; implant stability quotient; insertion torque; polyurethane; post-extraction sites; removal torque.

Grants and funding

This research received no external funding.