Bio-Based Pultruded CFRP Laminates: Bond to Concrete and Structural Performance of Full-Scale Strengthened Reinforced Concrete Beams

Materials (Basel). 2023 Jul 12;16(14):4974. doi: 10.3390/ma16144974.

Abstract

This paper presents an experimental study about the use of innovative bio-based pultruded carbon-fiber-reinforced polymer (CFRP) laminates for structural strengthening. The bio-based laminates were produced in the framework of an applied research project (BioLam) using a resin system with 50% (wt.%) bio-based content, obtained from renewable resources. In the first part of the study, their tensile and interlaminar shear properties were characterized and compared with those of conventional oil-based CFRP laminates. In the second part of the study, the bond behavior to concrete of both types of CFRP laminates applied according to the externally bonded reinforcement (EBR) technique was assessed by means of single-lap shear tests performed on CFRP-strengthened concrete blocks; the experimental results obtained from these tests were then used in a numerical procedure to calibrate local bond vs. slip laws for both types of laminates. The final part of this study comprised four-point bending tests on full-scale EBR-CFRP-strengthened reinforced concrete (RC) beams to assess the structural efficacy of the bio-based laminates; these were benchmarked with tests performed on similar RC beams strengthened with conventional CFRP laminates. The results obtained in this study show that the (i) material properties, (ii) the bond behavior to concrete, and (iii) the structural efficacy of the developed bio-based CFRP laminates are comparable to those of their conventional counterparts, confirming their potential to be used in the strengthening of RC structures.

Keywords: CFRP laminates; RC structures; bio-polymers; composites; construction; strengthening; sustainability.