Thermophysical Properties of Laser Powder Bed Fused Ti-6Al-4V and AlSi10Mg Alloys Made with Varying Laser Parameters

Materials (Basel). 2023 Jul 10;16(14):4920. doi: 10.3390/ma16144920.

Abstract

This study investigated the influence of diverse laser processing parameters on the thermophysical properties of Ti-6Al-4V and AlSi10Mg alloys manufactured via laser powder bed fusion. During fabrication, the laser power (50 W, 75 W, 100 W) and laser scanning speed (0.2 m/s, 0.4 m/s, 0.6 m/s) were adjusted while keeping other processing parameters constant. Besides laser processing parameters, this study also explored the impact of test temperatures on the thermophysical properties of the alloys. It was found that the thermophysical properties of L-PBF Ti-6Al-4V alloy samples were sensitive to laser processing parameters, while L-PBF AlSi10Mg alloy showed less sensitivity. In general, for the L-PBF Ti-6Al-4V alloy, as the laser power increased and laser scan speed decreased, both thermal diffusivity and conductivity increased. Both L-PBF Ti-6Al-4V and L-PBF AlSi10Mg alloys demonstrated similar dependence on test temperatures, with thermal diffusivity and conductivity increasing as the test temperature rose. The CALPHAD software Thermo-Calc (2023b), applied in Scheil Solidification Mode, was utilized to calculate the quantity of solution atoms, thus enhancing our understanding of observed thermal conductivity variations. A detailed analysis revealed how variations in laser processing parameters and test temperatures significantly influence the alloy's resulting density, specific heat, thermal diffusivity, and thermal conductivity. This research not only highlights the importance of processing parameters but also enriches comprehension of the mechanisms influencing these effects in the domain of laser powder bed fusion.

Keywords: density; laser powder bed fusion; specific heat; thermal conductivity; thermal diffusivity.