Alternating Direction Method of Multipliers-Based Constant Modulus Waveform Design for Dual-Function Radar-Communication Systems

Entropy (Basel). 2023 Jul 6;25(7):1027. doi: 10.3390/e25071027.

Abstract

In this paper, we design constant modulus waveforms for dual-function radar-communication (DFRC) systems based on a multi-input multi-output (MIMO) configuration of sensors for a far-field scenario. At first, we formulate a non-convex optimization problem subject to waveform synthesis for minimizing the interference power while maintaining a constant modulus constraint. Next, we solve this non-convex problem, iteratively, using the alternating direction method of multipliers (ADMM) algorithm. Importantly, the designed waveforms approximate a desired beampattern in terms of a high-gain radar beam and a slightly high gain communication beam while maintaining a desired low sidelobe level. The designed waveforms ensure an improved detection probability and an improved bit error rate (BER) for radar and communications parts, respectively. Finally, we demonstrate the effectiveness of the proposed method through simulation results.

Keywords: ADMM; MIMO communication; dual-function radar communication; waveform design.