Nutritional, Physico-Chemical, Phytochemical, and Rheological Characteristics of Composite Flour Substituted by Baobab Pulp Flour (Adansonia digitata L.) for Bread Making

Foods. 2023 Jul 13;12(14):2697. doi: 10.3390/foods12142697.

Abstract

The aim of this paper is to improve the nutritional quality of bakery products by replacing wheat flour (WF) with different proportions (10%, 20%, and 30%) of baobab flour (BF). The composite flours and bread obtained were evaluated from nutritional, physical-chemical, phytochemical, organoleptic, and rheological points of view. The results obtained show that BF is a rich source of minerals (K: 13,276.47 ± 174 mg/kg; Ca: 1570.67 ± 29.67 mg/kg; Mg: 1066.73 ± 9.97 mg/kg; Fe: 155.14 ± 2.95 mg/kg; Na: 143.19 ± 5.22 mg/kg; and Zn: 14.90 ± 0.01 mg/kg), lipids (1.56 ± 0.02 mg/100 g), and carbohydrates (76.34 ± 0. 06 mg/100 g) as well as for the phytochemical profile. In this regard, the maximum contents for the total polyphenols content (TPC) were recorded in the case of bread with 30% BF (297.63 ± 1.75 mg GAE/100 g), a total flavonoids content (TFC) of 208.06 ± 0.002 mg QE/100 g, and 66.72 ± 0.07% for antioxidant activity (AA). Regarding the physical-chemical, rheological, and organoleptic analysis, the bread sample with 10% BF (BWB1) was the best among the samples with different proportions of BF. It presented a smooth, porous appearance (73.50 ± 0.67% porosity) and an elastic core (85 ± 0.27% elasticity) with a volume of 155.04 ± 0.95 cm3/100 g. It had better water absorption (76.7%) than WF (55.8%), a stability of 5.82 min, and a zero-gluten index. The scores obtained by BWB1 for the organoleptic test were as follows: Appearance: 4.81; color: 4.85; texture: 4.78; taste: 4.56; flavor: 4.37; and overall acceptability: 4.7. This study shows that BF improved the nutritional quality of the product, organoleptic properties, α-amylase activity, viscosity, and phytochemical profile, resulting in composite flour suitable for the production of functional bread.

Keywords: MIXOLAB; antioxidant activity; fatty acids; flavonoids; nutritional; organoleptic; total polyphenols content (TPC).

Grants and funding

This research paper is supported by the project “Increasing the impact of excellence research on the capacity for innovation and technology transfer within USAMVB Timisoara”, project code 6PFE, submitted in the competition Program 1—Development of the national system of re-search—development, Subprogram 1.2—Institutional performance, Institutional development projects—Development projects of excellence in R.D.I. and METROFOOD-RO-SMIS2014+136213.