Ferroptosis in Cancer Progression

Cells. 2023 Jul 10;12(14):1820. doi: 10.3390/cells12141820.

Abstract

Ferroptosis is a newly discovered iron-dependent form of regulated cell death driven by phospholipid peroxidation and associated with processes including iron overload, lipid peroxidation, and dysfunction of cellular antioxidant systems. Ferroptosis is found to be closely related to many diseases, including cancer at every stage. Epithelial-mesenchymal transition (EMT) in malignant tumors that originate from epithelia promotes cancer-cell migration, invasion, and metastasis by disrupting cell-cell and cell-cell matrix junctions, cell polarity, etc. Recent studies have shown that ferroptosis appears to share multiple initiators and overlapping pathways with EMT in cancers and identify ferroptosis as a potential predictor of various cancer grades and prognoses. Cancer metastasis involves multiple steps, including local invasion of cancer cells, intravasation, survival in circulation, arrest at a distant organ site, extravasation and adaptation to foreign tissue microenvironments, angiogenesis, and the formation of "premetastatic niche". Numerous studies have revealed that ferroptosis is closely associated with cancer metastasis. From the cellular perspective, ferroptosis has been implicated in the regulation of cancer metastasis. From the molecular perspective, the signaling pathways activated during the two events interweave. This review briefly introduces the mechanisms of ferroptosis and discusses how ferroptosis is involved in cancer progression, including EMT, cancer angiogenesis, invasion, and metastasis.

Keywords: EMT; angiogenesis; cancer; ferroptosis; metastasis.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Epithelial-Mesenchymal Transition / physiology
  • Ferroptosis*
  • Humans
  • Iron / metabolism
  • Lipid Peroxidation
  • Neoplasms* / pathology
  • Tumor Microenvironment

Substances

  • Iron

Grants and funding

The review was funded by the Innovative Research Team of High-level Local Universities in Shanghai and supported by the National Natural Science Foundation of China 81872230, 82173352 to R.C.