Bioactive Peptides and Protein Hydrolysates as Lipoxygenase Inhibitors

Biology (Basel). 2023 Jun 27;12(7):917. doi: 10.3390/biology12070917.

Abstract

Lipoxygenases are non-heme iron-containing enzymes that catalyze the oxidation of polyunsaturated fatty acids, resulting in the production of lipid hydroperoxides, which are precursors of inflammatory lipid mediators. These enzymes are widely distributed in humans, other eukaryotes, and cyanobacteria. Lipoxygenases hold promise as therapeutic targets for several human diseases, including cancer and inflammation-related disorders. Inhibitors of lipoxygenase have potential applications in pharmaceuticals, cosmetics, and food. Bioactive peptides are short amino acid sequences embedded within parent proteins, which can be released by enzymatic hydrolysis, microbial fermentation, and gastrointestinal digestion. A wide variety of bioactivities have been documented for protein hydrolysates and peptides derived from different biological sources. Recent findings indicate that protein hydrolysates and peptides derived from both edible and non-edible bioresources can act as lipoxygenase inhibitors. This review aims to provide an overview of the current knowledge regarding the production of anti-lipoxygenase protein hydrolysates and peptides from millet grains, chia seeds, insects, milk proteins, fish feed, velvet antler blood, fish scales, and feather keratins. The anti-lipoxygenase activities and modes of action of these protein hydrolysates and peptides are discussed. The strengths and shortcomings of previous research in this area are emphasized. Additionally, potential research directions and areas for improvement are suggested to accelerate the discovery of anti-lipoxygenase peptides in the near future.

Keywords: anti-lipoxygenase peptide; enzymatic hydrolysis; inflammation; lipoxygenase inhibitory activity.

Publication types

  • Review

Grants and funding

This research received no external funding.