A new approach to estimate soil organic carbon content targets in European croplands topsoils

Sci Total Environ. 2023 Nov 20:900:165811. doi: 10.1016/j.scitotenv.2023.165811. Epub 2023 Jul 26.

Abstract

Adopting land management practices that increase the stock of soil organic carbon (SOC) in croplands is widely promoted as a win-win strategy to enhance soil health and mitigate climate change. In this context, the definition of reference SOC content and stock values is needed to provide reliable targets to farmers, policymakers, and stakeholders. In this study, we used the LUCAS dataset to compare different methods for evaluating reference SOC content and stock values in European croplands topsoils (0-20 cm depth). Methods gave generally similar estimates although being built on very different assumptions. In the absence of an objective criterion to establish which approach is the most suitable to determine SOC reference values, we propose an ensemble modelling approach that consists in extracting the estimates using different relevant methods and retaining the median value among them. Interestingly, this approach led us to select values from the three different approaches with similar frequencies. Using estimated bulk density values, we obtained a first rough estimate of 3.5 Gt C of SOC storage potential in the cropland topsoils that we interpret as a long-term aspirational target that would be reachable only under extreme changes in agricultural practices. The use of additional methods in the ensemble modelling approach and more valid statistical spatial estimates may further refine our approach designed for the estimation of SOC reference values for croplands.

Keywords: Carbon storage; Climate mitigation; Data-driven modelling; Ensemble modelling; LUCAS dataset; Soil organic carbon.