Mere tension output from spring-linkage-based mechanical metamaterials

Sci Adv. 2023 Jul 28;9(30):eadh3870. doi: 10.1126/sciadv.adh3870. Epub 2023 Jul 28.

Abstract

Metamaterials whose properties are inaccessible with conventional materials offer powerful tools for unprecedentedly manipulating physical signals. However, an effective design strategy of metamaterials still remains a challenge for changing the compression or tension characters of stress waves during forward propagation. Here, we introduce a class of spring-linkage-based metamaterials exhibiting mere tension output at the distal end, no matter that the input is an axial impact, a sudden tension, or even alternating tension-compression. The metamaterials can turn compressive waves into pure tension and filter them out from the tension-compression mixed ones while allowing tensile signal stably propagating in soliton form. This is achieved by combining nonuniform and nonlinear properties of the proposed cells. In particular, these extraordinary functions of the metamaterial can be turned on or off and adjusted by tuning a key switch cell; thus, it is anticipated to serve as a start for more complex manipulation and utilization of mechanical signals.