Salt-Induced High-Density Vacancy-Rich 2D MoS2 for Efficient Hydrogen Evolution

Adv Mater. 2024 Apr;36(17):e2304808. doi: 10.1002/adma.202304808. Epub 2023 Aug 22.

Abstract

Emerging non-noble metal 2D catalysts, such as molybdenum disulfide (MoS2), hold great promise in hydrogen evolution reactions. The sulfur vacancy is recognized as a key defect type that can activate the inert basal plane to improve the catalytic performance. Unfortunately, the method of introducing sulfur vacancies is limited and requires costly post-treatment processes. Here, a novel salt-assisted chemical vapor deposition (CVD) method is demonstrated for synthesizing ultrahigh-density vacancy-rich 2H-MoS2, with a controllable sulfur vacancy density of up to 3.35 × 1014 cm-2. This approach involves a pre-sprayed potassium chloridepromoter on the growth substrate. The generation of such defects is closely related to ion adsorption in the growth process, the unstable MoS2-K-H2O triggers the formation of sulfur vacancies during the subsequent transfer process, and it is more controllable and nondestructive when compared to traditional post-treatment methods. The vacancy-rich monolayer MoS2 exhibits exceptional catalytic activity based on the microcell measurements, with an overpotential of ≈158.8 mV (100 mA cm-2) and a Tafel slope of 54.3 mV dec-1 in 0.5 m H2SO4 electrolyte. These results indicate a promising opportunity for modulating sulfur vacancy defects in MoS2 using salt-assisted CVD growth. This approach represents a significant leap toward achieving better control over the catalytic performances of 2D materials.

Keywords: 2D MoS2; chemical vapor deposition; hydrogen evolution reactions; salt‐assisted; sulfur vacancies.