Protein Corona of Anionic Fluid-Phase Liposomes Compromises Their Integrity Rather than Uptake by Cells

Membranes (Basel). 2023 Jul 20;13(7):681. doi: 10.3390/membranes13070681.

Abstract

Despite the undisputable role of the protein corona in the biointeractions of liposome drug carriers, the field suffers from a lack of knowledge regarding the patterns of protein deposition on lipid surfaces with different compositions. Here, we investigated the protein coronas formed on liposomes of basic compositions containing combinations of egg phosphatidylcholine (PC), palmitoyloleoyl phosphatidylglycerol (POPG), and cholesterol. Liposome-protein complexes isolated by size-exclusion chromatography were delipidated and analyzed using label-free LC-MS/MS. The addition of the anionic lipid and cholesterol both affected the relative protein abundances (and not the total bound proteins) in the coronas. Highly anionic liposomes, namely those containing 40% POPG, carried corona enriched with cationic proteins (apolipoprotein C1, beta-2-glycoprotein 1, and cathelicidins) and were the least stable in the calcein release assay. Cholesterol improved the liposome stability in the plasma. However, the differences in the corona compositions had little effect on the liposome uptake by endothelial (EA.hy926) and phagocytic cells in the culture (U937) or ex vivo (blood-derived monocytes and neutrophils). The findings emphasize that the effect of protein corona on the performance of the liposomes as drug carriers occurs through compromising particle stability rather than interfering with cellular uptake.

Keywords: cell uptake; fluid-phase bilayer; liposomes; protein corona.