Effect of Temperature and Insect Infestation Levels on Oxygen Depletion in Hermetic Storage

Insects. 2023 Jul 10;14(7):621. doi: 10.3390/insects14070621.

Abstract

Hermetic storage methods are effective at protecting grain against insect pests. Biotic and abiotic factors influence oxygen depletion during hermetic storage. We investigated the dual effects of temperature and initial pest infestation level on oxygen depletion during airtight storage. Glass jars filled with cowpea grain were infested (25 or 50 adult cowpea bruchids), then hermetically sealed and stored at 20, 30, or 40 °C for 30 days. Oxygen depletion, relative humidity, and temperature were monitored. Germination, grain moisture content, grain damage and weight loss, and adult emergence were assessed. Oxygen depletion varied by temperature and insect infestation level. However, 30 °C was the optimum temperature for oxygen depletion (reaching 5% or less in 10 days) regardless of insect infestation level. No changes were observed in germination and grain moisture content, minimal grain damage, or weight loss (<1%). Only at 20 °C were adult insects able to survive after 30 days and emerged 45 days post-treatment under normoxia. Therefore, hermetic storage containers should remain closed for more than 30 days to minimize re-infestation of grain in areas where average ambient temperatures rarely exceed 23 °C. Further research is needed to assess the effect of low temperatures on oxygen depletion and insect survival in hermetic storage beyond 30 days.

Keywords: grain protection; insect population; oxygen consumption; storage pests.

Grants and funding

This research received no external funding.