Surface Reconstruction and Passivation of BiVO4 Photoanodes Depending on the "Structure Breaker" Cs

JACS Au. 2023 Jul 13;3(7):1851-1863. doi: 10.1021/jacsau.3c00100. eCollection 2023 Jul 24.

Abstract

Monoclinic BiVO4 is one of the most promising photoanode materials for solar water splitting. The photoelectrochemical performance of a BiVO4 photoanode could be significantly influenced by the noncovalent interactions of redox-inert metal cations at the photoanode-electrolyte interfaces, but this point has not been well investigated. In this work, we studied the Cs+-dependent surface reconstruction and passivation of BiVO4 photoanodes. Owing to the "structure breaker" nature of Cs+, the Cs+ at the BiVO4 photoanode-electrolyte interfaces participated in BiVO4 surface photocorrosion to form a Cs+-doped bismuth vanadium oxide amorphous thin layer, which inhibited the continuous photocorrosion of BiVO4 and promoted surface charge transfer and water oxidation. The resulting cocatalyst-free BiVO4 photoanodes achieved 3.3 mA cm-2 photocurrent for water oxidation. With the modification of FeOOH catalysts, the photocurrent at 1.23 VRHE reached 5.1 mA cm-2, and a steady photocurrent of 3.0 mA cm-2 at 0.8 VRHE was maintained for 30 h. This work provides new insights into the understanding of Cs+ chemistry and the effects of redox-inert cations at the electrode-electrolyte interfaces.