Self-Hydrogen Supplied Catalytic Fractionation of Raw Biomass into Lignin-Derived Phenolic Monomers and Cellulose-Rich Pulps

JACS Au. 2023 Jun 29;3(7):1911-1917. doi: 10.1021/jacsau.3c00154. eCollection 2023 Jul 24.

Abstract

Lignocellulosic biomass is one of the most well-studied and promising green carbon sources. The fullest utilization of lignocellulosic biomass in hydrogen-free and mild conditions to produce phenolic monomers while preserving cellulose-rich pulps is challenging and has far-reaching significance. Here, we report an innovative strategy to convert lignocellulosic biomass into lignin oils and cellulose-rich pulps without exogenous hydrogen under mild conditions over a Pt/NiAl2O4 catalyst. In this process, the structural hydrogens in hemicellulose acted as a hydrogen source to realize the fractionation and depolymerization of lignin into phenolic monomers while keeping the cellulose intact, which is named self-hydrogen supplied catalytic fractionation (SCF). By using water as a solvent, the theoretical yield of phenolic monomers (46.6 wt %, with propyl(ethyl) end-chained syringol and guaiacol as main products) is achieved at 140 °C for 24 h, with 90% cellulose intact in birch sawdust. This H2-free process can be extended to other biomass (hardwood, softwood, and grass) and can be scaled up. The Pt/NiAl2O4 catalyst also shows good stability in recycling as well as regeneration treatment. This work provides a new strategy to achieve high utilization of lignocellulosic biomass for sustainable biorefinery by using water as a solvent without exogenous hydrogen under mild conditions.