Fibre-infused gel scaffolds guide cardiomyocyte alignment in 3D-printed ventricles

Nat Mater. 2023 Aug;22(8):1039-1046. doi: 10.1038/s41563-023-01611-3. Epub 2023 Jul 27.

Abstract

Hydrogels are attractive materials for tissue engineering, but efforts to date have shown limited ability to produce the microstructural features necessary to promote cellular self-organization into hierarchical three-dimensional (3D) organ models. Here we develop a hydrogel ink containing prefabricated gelatin fibres to print 3D organ-level scaffolds that recapitulate the intra- and intercellular organization of the heart. The addition of prefabricated gelatin fibres to hydrogels enables the tailoring of the ink rheology, allowing for a controlled sol-gel transition to achieve precise printing of free-standing 3D structures without additional supporting materials. Shear-induced alignment of fibres during ink extrusion provides microscale geometric cues that promote the self-organization of cultured human cardiomyocytes into anisotropic muscular tissues in vitro. The resulting 3D-printed ventricle in vitro model exhibited biomimetic anisotropic electrophysiological and contractile properties.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Gelatin* / chemistry
  • Humans
  • Hydrogels / chemistry
  • Myocytes, Cardiac
  • Printing, Three-Dimensional
  • Tissue Engineering / methods
  • Tissue Scaffolds* / chemistry

Substances

  • Gelatin
  • Hydrogels

Associated data

  • figshare/10.6084/m9.figshare.22787714