Surfactant regulated Core-Double-Shell NF@NiO nanosheets matrix as integrated anodes for Lithium-Ion batteries

J Colloid Interface Sci. 2023 Nov 15;650(Pt B):1679-1688. doi: 10.1016/j.jcis.2023.07.111. Epub 2023 Jul 19.

Abstract

The direct oxidation of three-dimensional nickel foam (3D NF) to nickel oxide (NiO) as integrated anode material for lithium-ion batteries (LIBs) has attracted significant attention towards achieving high-areal-capacity and high-energy density LIBs. However, the rate capability of such monolithic NiO in LIBs usually falls off rapidly due to the poor electrical conductivity that hindered its ionic transport kinetics. Herein, to ease the ionic transport constrains, a surfactant-regulated strategy is developed for preparing in-situ core-double-shell architecture that consists of core nickel skeleton, dense nickel oxide shell and porous nickel oxide nanosheets (NS) shell as anode materials for LIBs. Among the three employed surfactants including cationic surfactant, anionic surfactant and nonionic surfactant, the anionic surfactant (sodium dodecyl sulfate, SDS) modulated anode denoted SDS-NF@NiONS exhibits ultrahigh reversible areal capacity of 8.64 mAh cm-2@ 0.4 mA cm-2, and excellent rate areal capacity of 5.20 mAh cm-2 @ 3.0 mA cm-2, which did not only show the best ever reported NiO-based high-areal-capacity based electrodes, but also demonstrate impressive performance in practical full cell LIBs. In addition, in-situ Raman and kinetic analyses confirm the mechanism of Li-ion storage and facile ionic transport kinetics in this proposed design.

Keywords: Lithium-ion batteries; Nickel foam; Nickel oxide; Self-supportive electrode; Surfactant.