Formulating a novel drilling mud using bio-polymers, nanoparticles, and SDS and investigating its rheological behavior, interfacial tension, and formation damage

Sci Rep. 2023 Jul 26;13(1):12080. doi: 10.1038/s41598-023-39257-5.

Abstract

Formation damage is a well-known problem that occurs during the exploration and production phases of the upstream sector of the oil and gas industry. This study aimed to develop a new drilling mud formulation by utilizing eco-friendly bio-polymers, specifically Carboxymethyl Cellulose (CMC), along with nanostructured materials and a common surfactant, sodium dodecyl sulfate (SDS). The rheological properties of the drilling fluid and the impact of additives on its properties were investigated at the micromodel scale, using a flow rate of 20 mL/h. The polymer concentration and nano clay concentration were set at two levels: 0.5 wt% and 1 wt%, respectively, while the surfactant content was varied at three levels: 0.1 wt%, 0.4 wt%, and 0.8 wt%. The results of the interfacial tension (IFT) analysis demonstrated a significant decrease in the interfacial tension between oil and water with the increasing concentration of SDS. Furthermore, following the API standard, the rheological behavior of the drilling fluid, including the gel strength and thixotropic properties of the mud, was evaluated with respect to temperature changes, as this is crucial for ensuring the inherent rheological stability of the mud. The rheological analysis indicated that the viscosity of the mud formulation with nanoparticles experienced a reduction of up to 10 times with increasing shear rate, while other formulations exhibited a decline of 100 times. Notably, the rheological properties of the Agar specimen improved at 150 °F due to its complete solubility in water, whereas other formulations exhibited a greater drop in viscosity at this temperature. As the temperature increased, drilling fluid containing nanostructured materials exhibited higher viscosity.