Technetium Complexes with an Isocyano-alkyne Ligand and Its Reaction Products

Inorg Chem. 2023 Aug 7;62(31):12445-12452. doi: 10.1021/acs.inorgchem.3c01638. Epub 2023 Jul 26.

Abstract

The attachment of an ethyne substituent in the para position of phenylisocyanide, CNPhpC≡CH, enables the isocyanide to replace carbonyl ligands in the coordination sphere of common technetium(I) starting materials such as (NBu4)[Tc2(μ-Cl)3(CO)6]. The ligand exchange proceeds under thermal conditions and finally forms the corresponding hexakis(isocyanide)technetium(I) complex. The product undergoes a copper-catalyzed cycloaddition ("Click" reaction), e.g., with benzyl azide, which gives the [Tc(CNPhazole)6]+ cation. The free, uncoordinated "Click" product is obtained from a reaction of the corresponding tetrakis(CNPhazole)copper(I) complex and NaCN. It readily reacts with mer-[Tc(CO)3(tht)(PPh3)2](BF4) (tht = tetrahydrothiophene) under exchange of the thioether ligand. Alternatively, [Cu(CNPhazole)4]+ can be used as a transmetalation reagent for the synthesis of the hexakis(isocyanide)technetium(I) complex, which is the preferable approach for the synthesis of the technetium complex with the short-lived nuclear isomer 99mTc, and a corresponding protocol for [99mTc(CNPhazole)6]+ is reported. The 99Tc and copper complexes have been studied by single-crystal X-ray diffraction and/or spectroscopic methods including IR and multinuclear NMR spectroscopy.