The Genetic Basis of Decathlon Performance: An Exploratory Study

J Strength Cond Res. 2023 Aug 1;37(8):1660-1666. doi: 10.1519/JSC.0000000000004439.

Abstract

Remmel, L, Ben-Zaken, S, Meckel, Y, Nemet, D, Eliakim, A, and Jürimäe, J. The genetic basis of decathlon performance: an exploratory study. J Strength Cond Res 37(8): 1660-1666, 2023-Decathlon is a combined track and field competition consisting of 10 different events, most of which are anaerobic-type events. Therefore, it is assumed that an anaerobic genetic predisposition might be prevalent among decathletes. Yet, to the best of our knowledge, the genetic basis of decathlon performance had not been studied. Therefore, the aim of this study was to assess the prevalence genetic polymorphisms associated with power performance (AGT, rs699, Met235Thr T/C), speed (ACTN3, rs1815739 C1747T), aerobic endurance (PPARD, rs2016520 T294C), and lactate clearance (MCT1, rs1049434 A1470T) among decathletes. One hundred thirty-seven male track and field athletes (51 sprinters and jumpers, 59 long distance runners, and 27 decathletes) participated in the study. Genomic DNA was extracted from buccal epithelial cells. Genotypes were determined using the Taqman allelic discrimination assay. Decathletes had a higher prevalence of the ACTN3 RR genotype, which is associated with speed ability, and a lower prevalence of the PPARD CC genotype, which is associated with endurance performance compared with long-distance runners. Decathletes had a higher prevalence of the AGT CC genotype associated with strength performance and a higher prevalence of the MCT1 TT genotype, which is associated with improved lactate transport compared with both sprinters and jumpers and long-distance runners. The results suggest that a favorable genetic polymorphism for strength-related capability might be advantageous for decathletes, whereas a genetic makeup favoring aerobic performance is not necessary.

MeSH terms

  • Actinin / genetics
  • Athletes
  • Athletic Performance*
  • Genotype
  • Humans
  • Male
  • PPAR delta* / genetics
  • Polymorphism, Genetic
  • Track and Field*

Substances

  • PPAR delta
  • Actinin
  • ACTN3 protein, human