Simulation of passive exotendon assistive device for agricultural harvesting task

Phys Eng Sci Med. 2023 Dec;46(4):1375-1386. doi: 10.1007/s13246-023-01305-9. Epub 2023 Jul 26.

Abstract

This study proposes and investigates the feasibility of the passive assistive device to assist agricultural harvesting task and reduce the Musculoskeletal Disorder (MSD) risk of harvesters using computational musculoskeletal modelling and simulations. Several passive assistive devices comprised of elastic exotendon, which acts in parallel with different back muscles (rectus abdominis, longissimus, and iliocostalis), were designed and modelled. These passive assistive devices were integrated individually into the musculoskeletal model to provide passive support for the harvesting task. The muscle activation, muscle force, and joint moment were computed with biomechanical simulations for unassisted and assisted motions. The simulation results demonstrated that passive assistive devices reduced muscle activation, muscle force, and joint moment, particularly when the devices were attached to the iliocostalis and rectus abdominis. It was also discovered that assisting the longissimus muscle can alleviate the workload by distributing a portion of it to the rectus abdominis. The findings in this study support the feasibility of adopting passive assistive devices to reduce the MSD risk of the harvesters during agricultural harvesting. These findings can provide valuable insights to the engineers and designers of physical assistive devices on which muscle(s) to assist during agricultural harvesting.

Keywords: Agricultural harvesting; Assistive device; Back muscles; Musculoskeletal simulation; Passive exoskeleton.

MeSH terms

  • Back Muscles*
  • Computer Simulation
  • Mechanical Phenomena
  • Rectus Abdominis
  • Self-Help Devices*