Comparative effects of the alcoholic extract of Terminalia chebula and crocin on stress‑induced anxiety‑like behavior and memory impairment in male rats

Acta Neurobiol Exp (Wars). 2023;83(2):179-193. doi: 10.55782/ane-2023-016.

Abstract

Crocin and Terminalia chebula (T. chebula) were proven to have neuroprotective effects. In this study, we evaluated the preventive effects of crocin and alcoholic extract of the T. chebula alone and in combination to examine their efficacy against chronic restraint stress (CRS)‑induced cognitive impairment, anxiety‑like behaviors, hippocampal synaptic plasticity deficit as well as neuronal arborization damage in the hippocampal CA1 neurons. Over 14 consecutive days, animals received crocin, T. chebula, or their combination (5 min before CRS). The elevated plus‑maze results showed that crocin and T. chebula alone and in combination treatment significantly increased the time spent in open arms, percentage of open arm entries, and head dipping as compared with the CRS group. Barnes maze results showed that administration of crocin and T. chebula alone and their combination significantly improves spatial memory indicators such as distance traveled, latency time to achieving the target hole, and the number of errors when compared to the CRS group. These learning deficits in CRS animals correlated with a reduction of long-term potentiation (LTP) in hippocampal CA1 synapses, which both T. chebula and crocin treatment improved field excitatory postsynaptic potentials (fEPSP) amplitude and fEPSP slope reduction induced by CRS. Golgi‑Cox staining showed that T. chebula and crocin treatment increased the number of dendrites and soma arbors in the CA1 neurons compared with the CRS group. Our results suggest that both T. chebula and crocin attenuated CRS‑induced anxiety‑like behaviors, memory impairment, and synaptic plasticity loss in hippocampal CA1 neurons. We found no significant difference between single treatments of T. chebula or crocin and their combination in protecting CRS‑induced anxiety‑like behaviors, memory impairment, and synaptic plasticity loss in hippocampal CA1 neurons.

MeSH terms

  • Animals
  • Carotenoids / pharmacology
  • Carotenoids / therapeutic use
  • Hippocampus
  • Male
  • Memory Disorders / chemically induced
  • Memory Disorders / etiology
  • Neuronal Plasticity
  • Rats
  • Spatial Memory
  • Terminalia*

Substances

  • crocin
  • Carotenoids