The enriched environment prevents degeneration of cerebellum Purkinje cells layer of rats

Acta Neurobiol Exp (Wars). 2023;83(2):171-178. doi: 10.55782/ane-2023-015.

Abstract

Neurodegeneration is characterized by loss of neurons causing changes that lead individuals to debilitating conditions; the most common of this condition is the Alzheimer's disease. It has been related that enriched environment (EE) induces experience‑dependent plasticity mechanisms, improving the performance of the animals in learning and memory tests. This study evaluated the effects of EE on histological parameters of the cerebellum in rats that received intracerebroventricular streptozotocin. In the standard environment, streptozotocin (STZ) promoted a significant increase between the gaps in the Purkinje layer of approximately 20%. On the other hand, in an enriched environment, the control result (EE) was similar to the result under streptozotocin effect (STZEE). In the standard environment (SE) group a 26% significant reduction in Purkinje cell density was observed under STZ presence. By analyzing the results of the density of Purkinje cells under the effect of streptozotocin in a standard environment (STZSE) against the density of the layer of Purkinje cells also under the effect of streptozotocin in an enriched environment (STZEE), a significant reduction of approximately 76% in density was observed of Purkinje cells in standard environment (STZSE), the mean number of Purkinje cells in enriched environments was not reduced, despite of STZ. According to the results, treatment with STZ and exposure to EE did not change the cerebellum general morphology/cytoarchitecture, hence was no significant difference in the layers thickness. These facts demonstrate that the enriched environment appears to protect the Purkinje cells layer of cerebellum from possible degeneration.

MeSH terms

  • Alzheimer Disease* / pathology
  • Animals
  • Cerebellum
  • Purkinje Cells*
  • Rats
  • Streptozocin / toxicity

Substances

  • Streptozocin