Quantifying irrigation water demand and supply gap using remote sensing and GIS in Multan, Pakistan

Environ Monit Assess. 2023 Jul 25;195(8):990. doi: 10.1007/s10661-023-11546-6.

Abstract

Human interventions and rapid changes in land use adversely affect the adequate distribution of water resources. A research study was conducted to quantify the gap between demand and supply for irrigation water in Multan, Pakistan, which may lead to sustainable water management. Two remotely sensed images (Landsat 8 OLI and Landsat 5 TM) were downloaded for the years 2010 and 2020, and supervised classification method was performed for the selected land use land cover (LULC) classes and basic framework. During the evaluation, the kappa coefficient was found in the ranges of 0.83-0.85, and overall accuracy was found to be more than 80% which indicated a substantial agreement between the classified maps and the ground truth data for both years and seasons. The LULC maps showed that urbanization has increased by 49% during the last decade (2010-2020). Reduction in planting areas for wheat (9%), cotton (24%), and orchards (46%) was observed. An increase in planting areas for rice (92%) and sugarcane (63%) was observed. The changing LULC pattern may be related to variation in water demand and supply for irrigation. The irrigation water demand has decreased by 370.2 Mm3 from 2010 to 2020, due to the reduction in agricultural land and an increase in urbanization. Available irrigation water supply (canals/rainfall) was estimated as 2432 Mm3 for the year 2020 which was 26% less than that of total irrigation water demand (3281 Mm3). The findings also provide the database for sustainable water management and equitable distribution of water in the region.

Keywords: Demand and supply gap; LULC; Remotely sensed images; Water resources.

MeSH terms

  • Conservation of Natural Resources
  • Edible Grain
  • Environmental Monitoring / methods
  • Geographic Information Systems*
  • Humans
  • Pakistan
  • Remote Sensing Technology*
  • Urbanization