Activating Gel Polymer Electrolyte Based Zinc-Ion Conduction with Filler-Integration for Advanced Zinc Batteries

ACS Appl Mater Interfaces. 2023 Aug 9;15(31):37916-37924. doi: 10.1021/acsami.3c06702. Epub 2023 Jul 25.

Abstract

Quasi solid zinc batteries (QSZBs) based on gel electrolyte have performed as a significant application prospect as advanced high energy density electrochemical storage devices with safety, low cost, eco-friendliness, and flexibility. While, the practical application of QSZBs was enormously restricted by low ionic conductivity and poor strength of pure gel electrolyte. Here, in order to activate the zinc ion conduction in gel electrolyte, the kinds of inorganic fillers constituting the composite electrolyte was investigated. The theoretical study was also revealed by density functional theory to have deep insight into the mechanism. In particular, appropriate filler amount (ZnO#20) can make a noteworthy ion conductivity elevation (1.3 × 10-3 S cm-1) which is much better than the control sample (2.0 × 10-4 S cm-1) at -20 °C. As a result, the symmetric cell with ZnO#20 can achieve a long-term cycling life of over 1500 h. Moreover, the pouch cell coupled with vanadium pentoxide is assembled, and corresponding versatility is also identified with twisting, refrigeration (-20 °C) and cutting.

Keywords: Conductivity; Filler; Gel electrolyte; Low temperature; Zinc battery.