Unifying Nonlinear Response and Incoherent Mixing in Action-2D Electronic Spectroscopy

J Phys Chem Lett. 2023 Aug 3;14(30):6872-6879. doi: 10.1021/acs.jpclett.3c01670. Epub 2023 Jul 25.

Abstract

Action-detection has expanded the scope and applicability of 2D electronic spectroscopy, while posing new challenges for the unambiguous interpretation of spectral features. In this context, identifying the origin of cross-peaks at early waiting times is not trivial, and incoherent mixing is often invoked as an unwanted contribution masking the nonlinear signal. In this work, we elaborate on the relation between the nonlinear response and the incoherent mixing contribution by analyzing the action signal in terms of one- and two-particle observables. Considering a weakly interacting molecular dimer, we show how cross-peaks at early waiting times, reflecting exciton-exciton annihilation dynamics, can be equivalently interpreted as arising from incoherent mixing. This equivalence, on the one hand, highlights the information content of spectral features related to incoherent mixing and, on the other hand, provides an efficient numerical scheme to simulate the action response of weakly interacting systems.