Rubellimicrobium arenae sp. nov., isolated from desert soil

Int J Syst Evol Microbiol. 2023 Jul;73(7). doi: 10.1099/ijsem.0.005990.

Abstract

Two Gram-stain-negative strains, designated as SYSU D00286T and SYSU D00782, were isolated from a sand sample collected from the Kumtag Desert in Xinjiang, north-west China. Cells were aerobic, non-motile and positive for both oxidase and catalase. Growth occurred at 4-37 °C (optimum, 28-30 °C), pH 6.0-7.0 (optimum, pH 7.0) and NaCl concentration of 0-1.5 % (w/v; optimum, 0%). Growth was observed on Reasoner's 2A agar and nutrient agar, but not on Luria-Bertani agar and trypticase soy agar. The polar lipids were identified as diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol, three unidentified aminolipids, one unidentified glycolipid and two unidentified phospholipids. The major respiratory quinone was ubiquinone-10 and the major fatty acids (>10 %) were C16 : 0 and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). The 16S rRNA gene sequence similarity between strains SYSU D00286T and SYSU D00782 was 100%, and their average nucleotide identity (ANI), average amino acid identity and (AAI) digital DNA-DNA hybridization (dDDH) values were all 100.0 %. Phylogenetic analysis indicated that these two strains belong to the same species of the genus Rubellimicrobium and show the highest sequence similarity to Rubellimicrobium rubrum KCTC 72461T (98.2 %) and Rubellimicrobium roseum CCTCC AA 208029T (97.5 %). The ANI, AAI and dDDH values between SYSU D00286T (as well as SYSU D00782) and the other five Rubellimicrobium type strains were all less than or equal to 83.2, 80.1 and 23.6 %, respectively. Based on their phylogenetic, phenotypic and chemotaxonomical features, strains SYSU D00286T and SYSU D00782 represent a novel species of the genus Rubellimicrobium, for which the name Rubellimicrobium arenae sp. nov. is proposed. The type strain is SYSU D00286T (=MCCC 1K04981T=CGMCC 1.8626T=KCTC 82271T).

Keywords: Kumtag Desert; Rubellimicrobium arenae sp. nov.; polyphasic taxonomy.

MeSH terms

  • Agar
  • Bacterial Typing Techniques
  • Base Composition
  • DNA, Bacterial / genetics
  • Fatty Acids* / chemistry
  • Phospholipids / chemistry
  • Phylogeny
  • RNA, Ribosomal, 16S / genetics
  • Sequence Analysis, DNA
  • Soil*

Substances

  • Fatty Acids
  • RNA, Ribosomal, 16S
  • Soil
  • Agar
  • DNA, Bacterial
  • Phospholipids