Regulating Degradation Pathways of Polymers by Radical-Triggered Luminescence

Angew Chem Int Ed Engl. 2023 Sep 11;62(37):e202307573. doi: 10.1002/anie.202307573. Epub 2023 Aug 4.

Abstract

Understanding the radical behaviours during polymer degradation is beneficial to unveil and regulate the degradation pathways of polymers to achieve a sustainable polymer development. However, it is a long-standing challenge to study radical behaviours owing to the ultra-short lifetime of the transient radicals generated during the polymer degradation. In this contribution, we have proposed the radical-triggered luminescence to monitor the radical behaviours during polymer degradation without/with the addition of inorganic additives. It was disclosed that the pure polymers showed a single sigmoidal dynamic curve from peroxy radicals (ROO⋅) emissions, leading to the exponential proliferation for the degradation evolution. Alternatively, the degradation pathways with the addition of additives, layered double hydroxides (LDHs) with positively charged Al centers, could be modulated into a double sigmoidal dynamics, involving the main product of alkoxy radicals (RO⋅) with the activation energy of 40.2 kJ/mol and a small amount of ROO⋅ with 76.3 kJ/mol, respectively. Accordingly, the polymers with the additive-regulated pathways could exhibit prominently anti-degradation behaviours. This work is beneficial for the deep understanding of the radical mechanisms during polymer degradation, and for the rational design of anti-degradation polymers.

Keywords: Anti-Degradation; Degradation Pathways; Radical Behaviours; Radical-Triggered Luminescence; Real-Time Monitoring.