Contribution of glial cells to the neuroprotective effects triggered by repetitive magnetic stimulation: a systematic review

Neural Regen Res. 2024 Jan;19(1):116-123. doi: 10.4103/1673-5374.374140.

Abstract

Repetitive transcranial magnetic stimulation has been increasingly studied in different neurological diseases, and although most studies focus on its effects on neuronal cells, the contribution of non-neuronal cells to the improvement triggered by repetitive transcranial magnetic stimulation in these diseases has been increasingly suggested. To systematically review the effects of repetitive magnetic stimulation on non-neuronal cells two online databases, Web of Science and PubMed were searched for the effects of high-frequency-repetitive transcranial magnetic stimulation, low-frequency-repetitive transcranial magnetic stimulation, intermittent theta-burst stimulation, continuous theta-burst stimulation, or repetitive magnetic stimulation on non-neuronal cells in models of disease and in unlesioned animals or cells. A total of 52 studies were included. The protocol more frequently used was high-frequency-repetitive magnetic stimulation, and in models of disease, most studies report that high-frequency-repetitive magnetic stimulation led to a decrease in astrocyte and microglial reactivity, a decrease in the release of pro-inflammatory cytokines, and an increase of oligodendrocyte proliferation. The trend towards decreased microglial and astrocyte reactivity as well as increased oligodendrocyte proliferation occurred with intermittent theta-burst stimulation and continuous theta-burst stimulation. Few papers analyzed the low-frequency-repetitive transcranial magnetic stimulation protocol, and the parameters evaluated were restricted to the study of astrocyte reactivity and release of pro-inflammatory cytokines, reporting the absence of effects on these parameters. In what concerns the use of magnetic stimulation in unlesioned animals or cells, most articles on all four types of stimulation reported a lack of effects. It is also important to point out that the studies were developed mostly in male rodents, not evaluating possible differential effects of repetitive transcranial magnetic stimulation between sexes. This systematic review supports that through modulation of glial cells repetitive magnetic stimulation contributes to the neuroprotection or repair in various neurological disease models. However, it should be noted that there are still few articles focusing on the impact of repetitive magnetic stimulation on non-neuronal cells and most studies did not perform in-depth analyses of the effects, emphasizing the need for more studies in this field.

Keywords: astrocyte; glia; high-frequency repetitive magnetic stimulation; inflammation; low-frequency repetitive magnetic stimulation; microglia; neurologic disorders; oligodendrocyte; repetitive magnetic stimulation; theta-burst stimulation.

Publication types

  • Review