Occurrence and Chemical Control Strategy of Wheat Brown Foot Rot Caused by Microdochium majus

Plant Dis. 2023 Nov;107(11):3523-3530. doi: 10.1094/PDIS-02-23-0392-RE. Epub 2023 Nov 3.

Abstract

Wheat brown foot rot (WBFR), caused by a variety of phytopathogenic fungi, is an important soilborne and seedborne disease of wheat. WBFR causes wheat lodging and seedling dieback, which seriously affect the yield and quality of wheat. In this study, 64 isolates of WBFR were isolated from different wheat fields in Yancheng city, Jiangsu Province, China. The internal transcribed spacer, elongation factor 1α, and RNA polymerase II subunit were amplified and the sequencing results of the fragments were analyzed with BLAST in NCBI. Through morphological and molecular identification, all of the isolates were identified as Microdochium majus. Verification by Koch's postulates confirmed that M. majus was the pathogen causing WBFR. The antifungal activities of fludioxonil and prochloraz against 64 isolates of M. majus were determined based on mycelial growth inhibition method. The results showed that fludioxonil and prochloraz had good antifungal activity against M. majus. The mean 50% effective concentration values of fludioxonil and prochloraz against M. majus were 0.2956 ± 0.1285 μg/ml and 0.0422 ± 0.0157 μg/ml, respectively. Control efficacy for seed-coating treatments conducted in a greenhouse indicated that M. majus severely damaged the normal growth of wheat, while seed coating with fludioxonil or prochloraz significantly reduced the disease incidence and improved the seedling survival rates. At fludioxonil doses of 7.5 g per 100 kg and prochloraz doses of 15 g per 100 kg, the incidence was reduced by 22.26 and 25.33%, seedling survival rates increased by 25.37 and 22.66%, and control efficacy reached 70.02 and 72.30%, respectively. These findings provide vital information for the accurate diagnosis and effective management of WBFR.

Keywords: fludioxonil; pathogen identification; prochloraz; seed coating; wheat brown foot rot.

MeSH terms

  • Antifungal Agents
  • Ascomycota*
  • China
  • Triticum*

Substances

  • Antifungal Agents

Supplementary concepts

  • Microdochium majus