Biomanufacturing of 3D Tissue Constructs in Microgravity and their Applications in Human Pathophysiological Studies

Adv Healthc Mater. 2023 Sep;12(23):e2300157. doi: 10.1002/adhm.202300157. Epub 2023 Aug 7.

Abstract

The growing interest in bioengineering in-vivo-like 3D functional tissues has led to novel approaches to the biomanufacturing process as well as expanded applications for these unique tissue constructs. Microgravity, as seen in spaceflight, is a unique environment that may be beneficial to the tissue-engineering process but cannot be completely replicated on Earth. Additionally, the expense and practical challenges of conducting human and animal research in space make bioengineered microphysiological systems an attractive research model. In this review, published research that exploits real and simulated microgravity to improve the biomanufacturing of a wide range of tissue types as well as those studies that use microphysiological systems, such as organ/tissue chips and multicellular organoids, for modeling human diseases in space are summarized. This review discusses real and simulated microgravity platforms and applications in tissue-engineered microphysiological systems across three topics: 1) application of microgravity to improve the biomanufacturing of tissue constructs, 2) use of tissue constructs fabricated in microgravity as models for human diseases on Earth, and 3) investigating the effects of microgravity on human tissues using biofabricated in vitro models. These current achievements represent important progress in understanding the physiological effects of microgravity and exploiting their advantages for tissue biomanufacturing.

Keywords: biomanufacturing; bioreactors; disease modeling; microgravity; tissue engineering.

Publication types

  • Review
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Humans
  • Microphysiological Systems
  • Organoids
  • Tissue Engineering
  • Weightlessness*