Freezing-resistant poly(N-isopropylacrylamide)-based hydrogel for thermochromic smart window with solar and thermal radiation regulation

J Colloid Interface Sci. 2023 Dec 15;652(Pt A):663-672. doi: 10.1016/j.jcis.2023.07.115. Epub 2023 Jul 19.

Abstract

Adaptive regulation of solar and thermal radiation by windows in diverse (hot and cold) climates is essential to reduce building energy consumption. However, conventional hydrogel-based thermochromic smart windows lack thermal radiation regulation, and have difficulty to combine high solar regulation with excellent freezing resistance. It is challenging to integrate the above performance into one hydrogel-based thermochromic window. Here, we firstly prepared poly(N-isopropylacrylamide-co-N, N-dimethylacrylamide)/ethylene glycol (PNDE) hydrogels with tunable and excellent freezing resistance (below -100 °C) by adding the anti-freezing agent ethylene glycol, and assembled PNDE hydrogels, polyvinylidene fluoride and polymethyl methacrylate-silver nanowires panels into a freezing-resistant smart window with solar and thermal radiation regulation (STR). PNDE hydrogels had an excellent thermochromic performance with luminous transmittance (Tlum) of 89.3 %, solar regulation performance (ΔTsol) of 80.7 % and tunable phase change temperature (τc, 22-44 °C). The assembled STR window showed high Tlum of 68.2 %, high ΔTsol of 62.6 %, suitable τc of ∼30 °C and freezing resistance to low temperature of -27 °C. Moreover, the different thermal emissivity (0.94 and 0.68) of the two sides of the STR window gave it the ability of radiative cooling in hot climates and warm-keeping in cold climates. Compared to the conventional thermochromic windows, the STR window promotes heat dissipation in hot conditions while reduces heat loss in cold conditions and is applicable to diverse climates, which is a promising energy-saving device for reducing building energy consumption.

Keywords: Smart window; Solar regulation; Thermal radiation regulation; Thermochromism; poly(N-isopropylacrylamide).