Innovative co-treatment technology for effective disposal of electrolytic manganese residue

Environ Pollut. 2023 Oct 15:335:122234. doi: 10.1016/j.envpol.2023.122234. Epub 2023 Jul 21.

Abstract

Electrolytic manganese residue (EMR) stockpiles contain significant amounts of Mn2+ and NH4+-N which pose a risk of environmental pollution. For EMR safe disposal, an innovative approach is proposed that involves direct sodium silicate-sodium hydroxide (Na2SiO3-NaOH) collaborative technology. This approach utilises Na2SiO3 and NaOH as the solidifying agent and activator, respectively, to treat EMR without hazardous effects. The study also provides insights into the kinetics of Mn2+ leaching under the effect of Na2SiO3-NaOH. Leaching efficiency was determined by varying parameters such as stirring rate, reaction temperature, pH of the initial solution, Na2SiO3 concentration, and reaction time to investigate the efficacy of this method. The study indicates that the co-treatment technology of Na2SiO3-NaOH can achieve maximum solidification efficiencies of 99.7% and 98.2% for Mn2+ and NH4+-N, respectively. The process can successfully solidify Mn2+ by synthesising Mn(OH)2 and MnSiO3 in an alkaline environment under optimal conditions including stirring rate of 450 rpm, initial solution pH of 8, test temperature of 40 °C, test time of 420 min, and Na2SiO3 content of 5%. The findings of this study have confirmed that surface chemistry plays a vital role in regulating the test rate and the proposed equation accurately describes Mn2+ leaching kinetics. Overall, the co-treatment technology involving Na2SiO3-NaOH is a viable solution for EMR resource utilisation without compromising environmental safety. This method has the potential to be implemented for other waste streams with comparable compositions, ultimately promoting the sustainable management of waste.

Keywords: Electrolytic manganese residue; Environmental pollution; Harmless disposal; Leaching kinetics; Synergistic technology.

MeSH terms

  • Electrolytes* / chemistry
  • Ions
  • Manganese* / chemistry
  • Sodium Hydroxide

Substances

  • Manganese
  • Sodium Hydroxide
  • Electrolytes
  • Ions