One-Step Hydrothermal Preparation of a Corncob-Derived Porous Adsorbent with High Adsorption Capacity for Urea in Wastewater: Sorption Experiments and Kinetics Study

Langmuir. 2023 Aug 1;39(30):10420-10431. doi: 10.1021/acs.langmuir.3c00782. Epub 2023 Jul 23.

Abstract

With rapid industrial development, the massive generation of nitrogenous wastewater poses a serious threat to both human beings and the ecosystem. Bio-based adsorbents are considered promising adsorption materials for many applications. However, their complex preparation procedures, large energy consumption, and difficulty of microstructure control hinder their practical applications. In this study, a new corncob-derived porous adsorbent (CPA) with excellent urea adsorption capacity in wastewater was prepared by the one-step hydrothermal process. The effects of the hydrothermal process conditions on the urea adsorption capacity of the CPA were evaluated and optimized using the response surface methodology, and a kinetic analysis of the CPA was also carried out. Our findings showed that the adsorption process of urea by the adsorbent followed the Langmuir isotherm and pseudo-second-order kinetic models. The high adsorption capacity for urea was attributed to the abundant porous structure and the hydrogen bonds formed between the adsorbent and the amine group in urea, which made it more conducive to the adsorption of urea. Therefore, we believe that CPA could be a promising adsorbent for urea removal in wastewater.