Large-scale biomonitoring of bisphenol analogues and their metabolites in human urine from Guangzhou, China: Implications for health risk assessment

Chemosphere. 2023 Oct:338:139601. doi: 10.1016/j.chemosphere.2023.139601. Epub 2023 Jul 20.

Abstract

Bisphenol analogues (BPs) are ubiquitous in the environment and have gained significant attention regarding their associated health risks. However, there is a lack of comprehensive biomonitoring data on BPs and their metabolites in human urine. To address this, we conducted a study evaluate the exposure to BPs in the general population of Guangzhou, China. A total of 1440 urine samples were collected from volunteers and analyzed for the presence of BPs and their metabolites after being pooled into 36 groups based on age and gender. The findings revealed the common detection of ten free-form BPs, as well as the urinary metabolites of BPA and BPS, in the pooled urine samples. BPA was the predominant free-form compound, constituting 50% of the total BPs. The primary urinary metabolites of BPA and BPS are BPA-G and BPS-G, respectively, indicating glucuronidation as their primary metabolic pathway. The composition of urinary metabolites of BPA and BPS varied by age and sex, while the concentration of total BPs in urine was not significantly associated with age and sex. Enzymatic hydrolysis yielded a mean amplification of individual BPs concentrations in urine samples ranging from 1.8 times (BPA) to 4.6 times (BPS). Based on the outcomes, it was estimated that conjugated forms accounted for 96.9%, 96.2%, 94.7%, 94.1%, 92.6%, 89.1%, 87.3%, 87.2%, 87.1% and 85.8% of BPP, BPAF, BPZ, BPE, BPAP, BPF, BPA, BPC, BPS and BPF, respectively, in the pooled urine samples. Preliminary risk assessments indicated that the estimated daily intake of BPA was much higher than the latest proposed tolerable daily intake. Due to the unavailability of health-based guideline values for alternative BPs, some of them exhibit daily intakes comparable to BPA, implying that greater attention should be paid to health risks associated with exposure to BPs.

Keywords: Bisphenol analogues; Guangzhou; Health risk assessments; Metabolite.

MeSH terms

  • Benzhydryl Compounds / analysis
  • Biological Monitoring*
  • China
  • Humans
  • Phenols* / analysis

Substances

  • bisphenol A
  • Phenols
  • Benzhydryl Compounds