Cottonseed oil alleviates ischemic stroke injury by inhibiting ferroptosis

Brain Behav. 2023 Oct;13(10):e3179. doi: 10.1002/brb3.3179. Epub 2023 Jul 21.

Abstract

Introduction: Ferroptosis has recently been recognized as a new cause of ischemia reperfusion injury due to blood-brain barrier (BBB) disruption followed by secondary iron-loaded transferrin (TF) influx. As a novel and independent cell death pathway, ferroptosis was characterized by iron-dependent lipid peroxidation, decline of GSH, GPX4, and shrinking mitochondria. Cottonseed oil (CSO), a liposoluble solvent, can alleviate ischemia stroke injuries and oxidative stress. However, the effect of CSO on ischemic stroke-induced ferroptosis has not been explored. In this study, we investigated the effect of CSO on ferroptosis caused by cerebral ischemic injury in rats.

Methods: We conducted the subcutaneous injection of 1.3 mL/kg CSO every other day for 3 weeks on rats with middle cerebral artery occlusion-reperfusion (MCAO-R) injury. We used Garcia Test, TTC staining, HE, Nissl and NeuN staining, Evans blue test, 68 Ga-citrate PET, Western blot, immunofluorescence staining, Elisa kits, and transmission electron microscopy to detect the infarct volume, neural injuries, and ferroptosis-related indexes.

Results: CSO treatment could significantly ameliorate MCAO-R-induced neurological dysfunction in a male rat model. Furthermore, it reduced infarct volume and neuronal injuries; protected BBB integrity; reduced the influx of iron ion, TF, and TF receptors; up-regulated anti-ferroptosis proteins (GPX4, xCT, HO1, FTH1), while down-regulating ferroptosis-related protein ACSL4; increased the activity of GSH and SOD; and decreased MDA and LPO levels. Mitochondrial destruction induced by ischemic stroke was also alleviated by CSO treatment.

Conclusion: CSO treatment can alleviate ischemic stroke injury via ferroptosis inhibition, which provides a new potential therapeutic mechanism for CSO neuroprotection against ischemic stroke.

Keywords: 68Ga-citrate; cottonseed oil (CSO); ferroptosis; ischemic stroke; neuroprotection; positron emission tomography (PET).